\oplus
 Healer

Healer Products Certificates of Analysis (COA)

Dear Healer Patron,

We are committed to producing high quality, clean, and accurately labeled cannabis products to help you feel your best. As you'll see in the following pages, we invest in the most thorough testing available in our region, not just for the content of medicinal components, but also for the absence of pesticides, toxic solvents, heavy metals, and microbiological contaminants.

To be transparent and earn your trust, our third-party laboratory certificates of analysis are attached.

Having previously owned and participated in a cannabis analytic laboratory for several years, I understand the inherent challenges related to reproducibility, calibration, and validation with peer laboratories. In the cannabis analytic industry, potency results are considered accurate within 10% deviation from the actual value. That's why after Healer performs its own internal analytics, we send samples of our bulk extracts and final products to at least one third-party lab, and sometimes two.

If you have any questions about the data on the following pages, wed love to hear from you. Thank you for choosing Healer and taking a powerful step for your good health.

Sincerely,

Dr. Dustin Sulak

CANNABINOIDS

Cannabinoid	Total Mg		
	Per Pump*	Per Bottle**	
TOTAL	$\mathbf{2 1 . 3 5}$	$\mathbf{9 0 7 . 3 8}$	
CBC	0.45	19.13	
CBCA	0.38	16.15	
CBD	9.74	413.95	
CBDA	8.94	379.95	
CBDV	0.22	9.35	
CBDVA	0.35	14.88	
CBG	0.34	14.45	
CBGA			
CBL			
CBLA			
CBN	0.40	17.00	
CBNA			
Δ^{8}-THC			
Δ^{9}-THC	0.33	14.03	
$\Delta^{10}-$ THC			
EXO-THC	0.20	8.50	
THCA			
THCV			
THCVA	Nova Analytic Labs		
$3^{\text {rd Party Tested By: }}$			
$3^{\text {rd }}$ Party Testing ID:	WPH.L.23.003-Cann NAL-231215-004		

*one pump ≈ 1 gram of topical hydrogel cream ** one bottle $\approx 42.5 \mathrm{~g}$

HEAVY METALS

TEST	RESULTS
Arsenic	Pass-None Detected
Cadmium	Pass-None Detected
Lead	Pass-None Detected
Mercury	Pass-None Detected
$3^{\text {rd }}$ Party Tested By:	Nova Analytic Labs
$3^{\text {rd }}$ Party Testing ID:	H.23.007.D-Oil-Cont
	NAL-230815-084
	H.23.008.A-Oil-Cont
	NAL-230907-056

PESTICIDES

TEST	RESULT
Bifenthrin	Pass-None Detected
Cyfluthrin	Pass-None Detected
Daminozide	Pass-None Detected
Etoxazole	Pass-None Detected
Imazalil	Pass-None Detected
Myclobutanil	Pass-None Detected
Spiromesifen	Pass-None Detected
Trifloxystrobin	Pass-None Detected
3	
3rd Party Tested By:	Nova Analytic Labs
	H.23.007.D-Oil-Cont
	NAL-230815-084
	H.23.008.A-Oil-Cont
	NAL-230907-056

Topical Hydrogel Cream

Batch ID: WPH.L.23.002

Product Type:
 1:1 CBD/CBDA Topical Hydrogel Cream
 Whole Plant Hemp

Product Expiration Date:
December 18, 2025

COA Issue Date:

December 19, 2023
Ingredients:
Purified Water, Organic MCT Coconut Oil, Menthol, Copaiba Balsam oil, MOFGA Certified Clean Maine Industrial Hemp <0.3\% THC, D-Limonene, gel maker (isohexadecane polysorbate 80 sodium acrylate, acryloyldimethyl taurate copolymer), Traces of Ethyl Alcohol (Ethanol).

Strains:

Lifter, Silver Haze, Sour Space Candy, Hawaiian Haze, Cake Berry

$3^{\text {rd }}$ Party Lab

 Results Attached
CERTIFICATE OF ANALYSIS

* FOR QUALITY ASSURANCE PURPOSES. NOT A MAINE COMPLIANCE CERTIFICATE. WPH.L.23.003-CANN (TOPICAL) // PRODUCED: DEC 19, 2023

CLIENT: HEALER HEMP LLC // BATCH: PASSED

BATCH NO.: WPH.L.23.003 ${ }^{1}$
MATRIX: TOPICAL ${ }^{1}$
SAMPLE ID: NAL-231215-004
COLLECTED ON: DEC 15, 2023
RECEIVED ON: DEC 15, 2023
SAMPLE SIZE: $5.352 \mathrm{G}{ }^{1}$
SAMPLED BY: ANNA KUPEL
RECEIVED BY: IAN LEONARD

1 ENTERED BY CLIENT

MANUFACTURER INFO

MANUFACTURER

HEALER HEMP LC
119 ORION ST
BRUNSWICK, MAINE 04011

LICENSE

CGR26424
MEDICINAL - CAREGIVER

CANNABINOID OVERVIEW

CBC:	0.974%
CBDA:	0.894%
TOTALCANNABINOIDS:	2.14%

BATCH RESULT: PASSED

POTENCY PASS

CAN.1: POTENCY \& CANNABINOID PROFILE BY HPLC-UV PREPARATION: DEC 18, 2023 // ANALYSIS: DEC 19, 2023

** TOTAL CBC $=(C B D A X 0.877)+C B D$
** TOTAL THC $=($ THCA X 0.877) + THC
Reported on an as received basis
$1000 \mu \mathrm{~g} / \mathrm{g}=1 \mathrm{mg} / \mathrm{g}$

AUTHORIZED BY:
ZACHARY SMITH LABORATORY MANAGER, NOVA ANALYTIC LABS DEC 19, 2023

https://lims.tagleaf.com/coa_/qZ065B1vEv

NOTES

CERTIFICATE OF ANALYSIS

* FOR QUALITY ASSURANCE PURPOSES. NOT A MAINE COMPLIANCE CERTIFICATE.

H.23.007.D-CONT (CONCENTRATE) // PRODUCED: AUG 18, 2023

CLIENT: HEALER HEMP LLC // BATCH: PASSED

NOVA ANALYTIC LABS
 Tomorrow's Testing, Today.

PST.2: PESTICIDES, INSECTICIDES, FUNGICIDES AND GROWTH REGULATORS BY LC-HRMS PREPARATION: AUG 16, 2023 // ANALYSIS: AUG 16, 2023

ANALYte	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{kg}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL	AnAlyte	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{kg}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL
NALED	$500 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/190	N/A	ETHOPROPHOS	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A
OXAMYL	$1000 \mu \mathrm{~g} / \mathrm{kg}$	ND	$142 / 474$	N/A	FLUDIOXONIL	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	$142 / 190$	N/A
PHOSMET	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	$142 / 142$	N/A	HEXYTHIAZOX	1000	ND	$142 / 474$	N/A
ACEPHATE	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/190	N/A	HEXYTHIAZOX	$\mu \mathrm{g} / \mathrm{kg}$	ND	$142 / 474$	N/A
ALDICARB	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/190	N/A	PRALLETHRIN	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A
BOSCALID	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/190	N/A	SPIROXAMINE	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	$142 / 190$	N/A
CARBARYL	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A	THIACLOPRID	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A
DIAZINON	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	$142 / 142$	N/A	AZOXYSTROBIN	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A
FIPRONIL	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/190	N/A	CHLORFENAPYR	1000	ND	$142 / 474$	N/A
IMAZALIL	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A	CHLORFENAPYR	$\mu \mathrm{g} / \mathrm{kg}$			N/A
METHOMYL	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/190	N/A	CHLORPYRIFOS	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A
PROPOXUR	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A	CLOFENTEZINE	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A
SPINOSAD	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	$142 / 142$	N/A	CYPERMETHRIN	1000	ND	$142 / 474$	N/A
ABAMECTIN	$500 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/190	N/A	CYPERMETHRIN	$\mu \mathrm{g} / \mathrm{kg}$			
ETOXAZOLE	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A	IMIDACLOPRID	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/190	N/A
MGK-264 I		ND	86.8/86.8	N/A	MYCLOBUTANIL	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A
MALATHION	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	$142 / 142$	N/A	SPIROMESIFEN	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A
METALAXYL	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A	TEBUCONAZOLE	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/190	N/A
PYRIDABEN	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A	THIAMETHOXAM	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A
BIFENAZATE	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	$142 / 142$	N/A	FENPYROXIMATE	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/190	N/A
BIFENTHRIN	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A	PACLOBUTRAZOL	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/190	N/A
CARBOFURAN	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A	PROPICONAZOLE	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/190	N/A
CYFLUTHRIN	$1000 \mu \mathrm{~g} / \mathrm{kg}$	ND	$142 / 474$	N/A	SPIROTETRAMAT	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A
DAMINOZIDE	$1000 \mu \mathrm{~g} / \mathrm{kg}$	ND	$142 / 474$	N/A	PERMETHRIN CIS		ND	61.2/61.2	N/A
DICHLORVOS	$1000 \mu \mathrm{~g} / \mathrm{kg}$	ND	$142 / 474$	N/A	KRESOXIM-	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/190	N/A
DIMETHOATE	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A	METHYL	$400 \mu \mathrm{~g} / \mathrm{kg}$		142/190	
ETOFENPROX	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	$142 / 190$	N/A	TRIFLOXYSTROB-	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A
FENOXYCARB	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A	IN				
FLONICAMID	$1000 \mu \mathrm{~g} / \mathrm{kg}$	ND	$142 / 474$	N/A	PARATHION-	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A
MGK-264 II		ND	55.5/55.5	N/A	METHYL	$200 \mu \mathrm{~g} / \mathrm{kg}$			
METHIOCARB	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/142	N/A	PERMETHRIN TRANS		ND	$81.1 / 81.1$	N/A
ACEQUINOCYL	$2000 \mu \mathrm{~g} / \mathrm{kg}$	ND	142/949	N/A	PIPERONYLBUTOXIDE	$\begin{array}{r} 2000 \\ \mu \mathrm{~g} / \mathrm{kg} \end{array}$	ND	142/949	N/A

| CHLORANTRANIL- | $200 \mu \mathrm{~g} / \mathrm{kg}$ | ND | $142 / 142$ |
| :--- | :--- | :--- | :--- | $\mathrm{~N} / \mathrm{A}$

AUTHORIZED BY
ZACHARY SMITH

https://lims.tagleaf.com/coa_/ENoEZr7yAa

ANALYTE	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{kg}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL	ANALYTE	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{kg}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL
LEAD	$500 \mu \mathrm{~g} / \mathrm{kg}$	ND	$4.52 / 98.4$	N/A	CADMIUM	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	$4.23 / 82.0$	N/A
ARSENIC	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	$9.77 / 82.0$	N/A	MERCURY	$100 \mu \mathrm{~g} / \mathrm{kg}$	ND	$15.1 / 65.6$	N/A

END OF REPORT

CERTIFICATE OF ANALYSIS

* FOR QUALITY ASSURANCE PURPOSES. NOT A MAINE COMPLIANCE CERTIFICATE. H.23.008.A-OIL-CONT (CONCENTRATE) // PRODUCED: SEP 11, 2023

CLIENT: HEALER HEMP LLC // BATCH: PASSED

BATCH NO.: H. 23.008.A-OIL ${ }^{1}$
MATRIX: CONCENTRATE ${ }^{1}$
SAMPLEID: NAL-230907-056
COLLECTED ON: SEP 07, 2023
RECEIVED ON: SEP 07, 2023
SAMPLE SIZE: $1.108 \mathrm{G}{ }^{1}$
SAMPLED BY: ANNA KUPEL
RECEIVED BY: CHRISTOPHER COLE

1 ENTERED BY CLIENT

MANUFACTURER INFO

MANUFACTURER

HEALER HEMP LLC
119 ORION ST
BRUNSWICK, MAINE 04011
LICENSE
CGR26424
MEDICINAL - CAREGIVER

PST.2: PESTICIDES, INSECTICIDES, FUNGICIDES AND GROWTH REGULATORS BY LC-HRMS PREPARATION: SEP 08, 2023 // ANALYSIS: SEP 08, 2023

analyte	limit	AMT ($\mu \mathrm{g} / \mathrm{kg}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL	analyte		LIMIT	AMT ($\mu \mathrm{g} / \mathrm{kg}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL
NALED	$500 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/197	N/A	ETHOPROPHOS	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	148/148	N/A
OXAMYL	$1000 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/492	N/A	FLUDIOXONIL	400	$\mu \mathrm{g} / \mathrm{kg}$	ND	148/197	N/A
PHOSMET	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/148	N/A	HEXYTHIAZOX		1000	ND	148/492	N/A
ACEPHATE	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/197	N/A			$\mu \mathrm{g} / \mathrm{kg}$	ND		
ALDICARB	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/197	N/A	Pratlethrin	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	148/148	N/A
BOSCALID	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/197	N/A	SPIROXAMINE	400	$\mu \mathrm{g} / \mathrm{kg}$	ND	148/197	N/A
CARBARYL	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/148	N/A	THIACLOPRID	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	148/148	N/A
DIAZINON	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/148	N/A	AZOXYSTROBIN	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	148/148	N/A
FIPRONIL	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/197	N/A	CHLORFENAPYR		1000	ND	148/492	N/A
IMAZALIL	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/148	N/A			$\mu \mathrm{g} / \mathrm{kg}$			
METHOMYL	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/197	N/A	CHLORPYRIFOS	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	148/148	N/A
PROPOXUR	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/148	N/A	CLOFENTEZINE	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	148/148	N/A
SPINOSAD	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/148	N/A	CYPERMETHRIN		1000	ND	148/492	N/A
ABAMECTIN	$500 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/197	N/A	CYPERMETHRIN		$\mu \mathrm{g} / \mathrm{kg}$	ND	$148 / 492$	N/A
ETOXAZOLE	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/148	N/A	IMIDACLOPRID	400	$\mu \mathrm{g} / \mathrm{kg}$	ND	148/197	N/A
MGK-264 I		ND	90.1/90.1	N/A	MYCLOBUTANIL	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	148/148	N/A
MALATHION	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/148	N/A	SPIROMESIFEN	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	148/148	N/A
METALAXYL	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/148	N/A	TEBUCONAZOLE	400	$\mu \mathrm{g} / \mathrm{kg}$	ND	148/197	N/A
PYRIDABEN	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/148	N/A	THIAMETHOXAM	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	148/148	N/A
BIFENAZATE	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/148	N/A	FENPYROXIMATE	400	$\mu \mathrm{g} / \mathrm{kg}$	ND	148/197	N/A
BIFENTHRIN	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/148	N/A	PACLOBUTRAZOL	400	$\mu \mathrm{g} / \mathrm{kg}$	ND	148/197	N/A
CARBOFURAN	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/148	N/A	PROPICONAZOLE	400	$\mu \mathrm{g} / \mathrm{kg}$	ND	148/197	N/A
CYFLUTHRIN	$1000 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/492	N/A	SPIROTETRAMAT	200	$\mu \mathrm{g} / \mathrm{kg}$	ND	148/148	N/A
DAMINOZIDE	$1000 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/492	N/A	PERMETHRIN CIS			ND	63.5/63.5	N/A
DICHLORVOS	$1000 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/492	N/A	KRESOXIM-		$\mu \mathrm{g} / \mathrm{kg}$	ND	148/197	N/A
DIMETHOATE	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/148	N/A	METHYL		$\mu \mathrm{s}$ kg			
ETOFENPROX	$400 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/197	N/A	TRIFLOXYSTROB-		$\mu \mathrm{g} / \mathrm{kg}$	ND	148/148	N/A
FENOXYCARB	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/148	N/A	IN		$\mu \mathrm{g} / \mathrm{kg}$			
FLONICAMID	$1000 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/492	N/A	PARATHION-		$\mu \mathrm{g} / \mathrm{kg}$	ND	148/148	N/A
MGK-264 II		ND	57.6/57.6	N/A	METHYL		$\mu \mathrm{s}$ kg			
METHIOCARB	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/148	N/A	PERMETHRIN TRANS			ND	84.2/84.2	N/A
ACEQUINOCYL	$2000 \mu \mathrm{~g} / \mathrm{kg}$	ND	148/985	N/A	PIPERONYLBUTO- XIDE		$\begin{array}{r} 2000 \\ \mu \mathrm{~g} / \mathrm{kg} \end{array}$	ND	148/985	N/A

CHLORANTRANIL-	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	$148 / 148$
IPROLE		N / A	
PYRETHRINS CINERIN I	ND	$98.4 / 98.4$	$\mathrm{~N} / \mathrm{A}$
PYRETHRINS CINERIN II	ND	$100 / 100$	$\mathrm{~N} / \mathrm{A}$
PYRETHRINS JASMOLIN I	ND	$79.8 / 79.8$	$\mathrm{~N} / \mathrm{A}$
PYRETHRINS JASMOLIN II	ND	$62.0 / 62.0$	$\mathrm{~N} / \mathrm{A}$
PYRETHRINS PYRETHRIN I	ND	$458 / 458$	$\mathrm{~N} / \mathrm{A}$
PYRETHRINS PYRETHRIN	ND	$270 / 270$	$\mathrm{~N} / \mathrm{A}$
II			

https://lims.tagleaf.com/coa_/a22KOKEb7J

ANALYTE	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{kg}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL	ANALYte	LIMIT	AMT ($\mu \mathrm{g} / \mathrm{kg}$)	LOD/LOQ ($\mu \mathrm{g} / \mathrm{kg}$)	PASS/FAIL
LEAD	$500 \mu \mathrm{~g} / \mathrm{kg}$	< LOQ	$4.81 / 105$	N/A	CADMIUM	$200 \mu \mathrm{~g} / \mathrm{kg}$	ND	$4.50 / 87.1$	N/A
ARSENIC	$200 \mu \mathrm{~g} / \mathrm{kg}$	< LOQ	10.4/87.1	N/A	MERCURY	$100 \mu \mathrm{~g} / \mathrm{kg}$	ND	$16.0 / 69.7$	N/A

END OF REPORT

